14 research outputs found

    Multiwavelet-based grid adaptation with discontinuous Galerkin schemes for shallow water equations

    Get PDF
    We provide an adaptive strategy for solving shallow water equations with dynamic grid adaptation including a sparse representation of the bottom topography. A challenge in computing approximate solutions to the shallow water equations including wetting and drying is to achieve the positivity of the water height and the well-balancing of the approximate solution. A key property of our adaptive strategy is that it guarantees that these properties are preserved during the refinement and coarsening steps in the adaptation process.The underlying idea of our adaptive strategy is to perform a multiresolution analysis using multiwavelets on a hierarchy of nested grids. This provides difference information between successive refinement levels that may become negligibly small in regions where the solution is locally smooth. Applying hard thresholding the data are highly compressed and local grid adaptation is triggered by the remaining significant coefficients. Furthermore we use the multiresolution analysis of the underlying data as an additional indicator of whether the limiter has to be applied on a cell or not. By this the number of cells where the limiter is applied is reduced without spoiling the accuracy of the solution.By means of well-known 1D and 2D benchmark problems, we verify that multiwavelet-based grid adaptation can significantly reduce the computational cost by sparsening the computational grids, while retaining accuracy and keeping well-balancing and positivity

    SERGHEI (SERGHEI-SWE) v1.0: a performance-portable high-performance parallel-computing shallow-water solver for hydrology and environmental hydraulics

    Get PDF
    The Simulation EnviRonment for Geomorphology, Hydrodynamics, and Ecohydrology in Integrated form (SERGHEI) is a multi-dimensional, multi-domain, and multi-physics model framework for environmental and landscape simulation, designed with an outlook towards Earth system modelling. At the core of SERGHEI's innovation is its performance-portable high-performance parallel-computing (HPC) implementation, built from scratch on the Kokkos portability layer, allowing SERGHEI to be deployed, in a performance-portable fashion, in graphics processing unit (GPU)-based heterogeneous systems. In this work, we explore combinations of MPI and Kokkos using OpenMP and CUDA backends. In this contribution, we introduce the SERGHEI model framework and present with detail its first operational module for solving shallow-water equations (SERGHEI-SWE) and its HPC implementation. This module is designed to be applicable to hydrological and environmental problems including flooding and runoff generation, with an outlook towards Earth system modelling. Its applicability is demonstrated by testing several well-known benchmarks and large-scale problems, for which SERGHEI-SWE achieves excellent results for the different types of shallow-water problems. Finally, SERGHEI-SWE scalability and performance portability is demonstrated and evaluated on several TOP500 HPC systems, with very good scaling in the range of over 20 000 CPUs and up to 256 state-of-the art GPUs
    corecore